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LETTER TO THE EDITOR 

Finite-size evidence for Wigner crystallization of 2D electrons 
in a magnetic field 

P A Maksym 
Department of Physics and Astronomy, University of Leicester, Univmily Road, Leicester 
LEI 7RH, UK 

Received 17 October 1991 

AbstmL Finite-size calculations ace used to study the magnetic field dependence of the 
gmund state of interacting ZD electrons. It is found that the pair correlation function 
acquires the hexagonal symmetry of a quantum Wiper crystal when the filling factor 
is between and , The energy of the hexagonal state is compared with variational 
results for the Wigner crystal and [he nature of the lransilion to hexagonal symmetry is 
briefly discussed. 

Magnetic field induced Wigner crystallization of ZD electrons is currently under in- 
tense experimental study. In particular, techniques such as RF absorption [l], resis- 
tivity [2], threshold field studies [3] and threshold field studies combined with noise 
measurements [4] have recently been used to probe 2D electrons at GaAs-AlGaAs 
heterojunctions. The results indicate that the ground state is crystalline at filling 
factors less than $ and in a narrow range just greater than 6 with a re-entrant liquid 
state very close to 6 filling. Photoluminescence experiments also show anomalies at 
similar filling factors [5,6,7]. In addition there have been reports of re-entrant be- 
haviour at odd denominator fillings less than 6 [SI. There are also reports of Wigner 
crystallization in Si MOSFETS 191. In comparison, the generally accepted theoretical 
picture is that the Wigner crystal state is energetically favourable when the filling 
factor is less than about & [lo]. However this estimate is based on comparison 
of variational energies so cannot be used to study the details of the transition. An 
alternative is to perform finite-size calculations [ll] which has the advantage that the 
liquid and the aystal are treated in exactly the same way. This is the purpose the 
present work. 

The results presented here come from exact diagonalization of the Hamiltonian for 
six electrons at filling factors down to and four electrons down to &. They represent 
a considerable advance on previous finite-size studies which have been restricted to 
filling factors down to around i. Nevertheless no radically new techniques were used 
to obtain them. Instead, the ability to probe very small fillings is the cumulative result 
of improvements in program efficiency and increased computer availability. Symmetry 
was used to reduce the size of the Hamiltonian as far as possible, including the use 
of rotational symmetry to give a twofold reduction in the size of the Hamiltonian in 
cases when translational symmetry gave little advantage. The ground state was found 
by standard iterative techniques (Lanczos or Davidson). In most cases it proved 
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advantageous to use a starting vector made by prediagonalig the Hamiltonian in 
a sub-space formed from a few of the lowest energy basis states since this reduced 
the number of iterations by a factor of about 2. However the prediagonalization 
sometimes failed at the smallest filling factors because it gave a vector near orthogonal 
to the ground state. In these cases a starting vector with equal components was used 
instead. 

The calculations were done in the rectangular periodic geometry in a cell of height 
b and width a and the pair correlation function 

was used to look for signs of crystalline order. Here the angled brackets denote the 
ground state expectation value and n is the number of electrons. Of course it is 
impossible to study long runge order in a finite-size calculation, but it is possible to 
determine whether there is any short range order which is consistent with a Wigner 
crystal of a particular symmetry. Since the classical Wigner crystal of lowest energy 
is hexagonal [12] the aspect ratio R = b / a  of the rectangular cell was chosen to be 
compatible with hexagonal symmetry (i.e. R = 1/J3 when for n = 6 and R = &/2 
for n = 4). The use of rectangular periodic boundary conditions means that the 
hexagonal symmetly is not imposed on the system but the special choice of aspect 
ratio docs not exclude it. The emergence of this symmetry is therefore taken to be 
the signature of Wigner crystallization although it is also consistent with a hcxatic 
phase which is predicted to occur at higher temperatures than the crystal [13]. 

Results for the ground state pair correlation function at filling factors of 4 ,  $ 
and 6 are shown in figure 1. It is clear that the ground state evolves from one 
which is liquid-like at v = f to one which has hexagonal symmetry v = $. Further 
evidence for a crystalline state at U = comes from the structure factor and the 
symmetry of the excited state dispersion relation. In the limit of infinite magnetic 
field the components of the cyclotron orbit centre operators commute [14] and the 
orbit centres should form a lattice. Hence it is natural to examine the cyclotron orbit 
centre structure factor, S,(q) which is related to the usual S ( q )  by 

S(q)  = 1 - exp(-q2P/2)  t exp(-qZP/2)so(q)  

wherc l 2  = h / e B  is the square of the magnetic length [15]. This quantity is shown in 
figure 2. The lower right frame illustrates the correspondence between the rectangular 
reciprocal space of the finite-size calculation and the hexagonal reciprocal space of the 
Wigner crystal. The rectangular grid indicates the reciprocal space points accessible 
in the six-electron finite-size calculation at limteger filling and the bold lines show 
the reciprocal lattice of the hexagonal crystal. The rectangle TJKJ' is the irreducible 
rectangle in the Brillouin zone of the rectangular cell while the dottcd line shows 
part of the Brillouin zone of the hexagonal lattice; the points X, and J, are the 
high symmetry points of this zone. The four left hand frames show S,(q) along the 
Wigner crystal reciprocal lattice directions (r J and ( 3 , l ) )  at v = 5 and U = i. The 
length of q is measured by the number of points in the indicated direction, starting 
from r, and the arrows indicate the reciprocal lattice points of the Wigner crystal. 
It is clear that at U = f S,(q) has almost no peaks at the reciprocal lattice vectors 
of the Wigner crystal but the largest peaks occur at these vectors at v = $. Similar 
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behaviour is found when S,,(q) is examined along the r J '  direction. As the ground 
state aquires hexagonal symmetry its excitation spectrum also aquires hexagonal 
symmetry and this can be verified by looking at the energy dispersion E ( k ) .  (The 
assignment of k-values is as described by Maksym [16].) Since the hexagonal lattice 
has higher symmetry than the rectangular lattice some of the eigenvalues become near 
degenerate at the onset of hexagonal symmetly and this is consistent with softening 
of the roton mode of the liquid ground state [17]. For example, in figure 2 the 
points r, (0,2), K and (3,l) would be equivalent if the hexagonal symmehy was 
exact. Similar considerations show that the 16 k-points in the irreducible rectangle 
m a '  become equivalent to four sets of four points as the system becomes hexagonal. 
Consequently the eigenvalues merge into four neardegenerate multiplets. The onset 
of this behaviour is shown in the bottom right frame of figure 2. This gives the 
lowest eigenvalue at each k-point in the rectangular Brillouin zone at v = f and 
v = i. The energies are per electron, measured in units of ( e 2 / 4 r e e o ) m .  
The lowest four eigenvalues at v = i are near degenerate and occur at the k-points 
expected from symmetry considerations as are three of the eigenvalues belonging to 
the highest multiplet. The fourth lies between eigenvalues of the two intermediate 
multiplets and there is further interweaving of the eigenvalues belonging to these 
multiplets. Calculations for four electrons have shown that the interweaving persists 
until the filling factor is & when all the eigenvalues lie in near-degenerate multiplets, 
as expected for hexagonal symmetry. 

Flgurc 1. Ground state pair correlation functions far six interacting electrons, showing 
the emergence of hexagonal symmetry with decreasing filling. 

The ground state energy as a function of magnetic field is also consistent with the 
disappearance of the liquid ground states. One signature of the liquid ground state 
is a cusp-like minimum in the ground state energy as a function of magnetic field as 
can be seen at Y = 5 and v = i in figure 3. This shows the ground state energy 
per electron in units as in figure 2 against magnetic field in units of the number 



Lloo Lerts to the Editor 

F l p m  2. Comparison of SINCIUE facton and acitation spectrum for six electrons at 

bottom right frame illustrates the corresponding reciprocal space and the top right frame 
show the CXcilaIion spectrum. Different line stylcs indicate eigenvalues that belong to 
near degenerate multiplets in the large field limit: solid line: r multiplet; dotted line: 
(1,O) multiplet; broken line: (2,O) multiplet; chained line: (3,O) multiplet. 

y =  1 3 a nd U = i. S I N C I U ~ ~  facton are shown in the four left hand frames. The 

of magnetic flux quanta, m, through the rectangular cell; the filling factor is n/m. 
There is also a cusp at U = 4 but this is thought to be an artefact of the small 
aspect ratio used for the calculation. The periodic boundary conditions force the I 
components of the cyclotron orbit centres to lie on a grid of spacing A X  = 2x12 /b  
and in a real system the magnetic length is always much larger that the orhit centre 
spacing i.e. 1 B AX. lbgether with the relation m = ub/2nl2 ,  this requirement 
leads to the condition m B 2a/R and even denominator minima occur in finite-size 
calculations when the aspect ratio is so small that this condition is not satisfied [IS]. 
For six electrons at R = l/& the critical value of m is about 11 which is very close 
to U = i. The absence of a minimum at U = $ is consistent with the disappearance 
of the liquid state. Beyond 6/43 filling only two points (U = a and v = $ ) are 
shown in the figure since the Hamiltonian matrix at the remaining points is too big to 
handle. The energy at these two points is within 0.5% of Lam and Girvin's variational 
calculation of the Wigner crystal ground state energy [IO]. It is also within 0.3% of 
a calculation due Meissner and Brocksticger [I91 but for clarity only the Lam-Girvin 
result is shown. At U = $ the exact ground state energy is about 3% higher than 
the energy of a classical Wigner Bravais lattice (121 (broken line) but the difference 
drops to about 2% at U = & . 

The behaviour of the four-electron system in the near-classical regime at U = & 
was investigated quantitatively by examining its shear modulus and its excitations. 
The shear modulus was obtained from the difference between the energy of the 
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Figure 3. Ground state e n e r u  per electron against magnetic field. The pinu givC the 
s h  electron ground state energy and the t i n s  joining them are to guide the eye. Uniu 
are given in the text. 

system in a rectangular periodic cell and the energy in an oblique cell of the same 
height. This gives a shear modulus of 0 . 2 0 ( n / a b ) s / 2  compared with the classical 
value of 0 .245(n /ab)3 /2  [IZ]. Because the eigenvalues at U = & lie in near- 
degenerate multiplets, the excitation energies of the fourelectron system are available 
at only two k-points of the hexagonal Brillouin zone, namely X, and 3/4 along 
rJ,. The corresponding frequencies are 3w0 f 20% and 4 . 6 ~ ~  k 20% where the 
error comes from the spread of eigenvalues within each near-degenerate multiplet. 
The frequency wo is defined by wo = a 2 / w C  where 0 = e * / ( 4 m ~ ~ m * ~ ~ ) ,  a2 = 
(2ab) / (n&)  and w, is the cyclotron frequency. These frequencies can be compared 
with results for the classical Wigner crystal given by Meissner and Brockstieger [19] 
which, when extrapolated to U = &, are 4 . 2 ~ ~  and 5 . 7 ~ ~  respectively. Thus the 
classical frequencies lie above the exact ones which is consistent with the lower shear 
modulus of the finite-size system. The extent to which this is a finite-size effect is not 
yet clear. 

Since the finite-size calculation treats the liquid and the crystal in the same way 
it allows the evolution of the crystal state to be followed directly. It is found that 
the three peaks in g ( T )  along the l i e  y = 0.5b develop slowly as the filling factor 
decreases from U = to U = ;. Around U = $ there are only two peaks on the 
line y = 0.5b. Their positions are (0 ,0 .5b )  and (a ,0 .5b)  and they are equivalent 
because of the periodic boundary conditions. The central peak (at (0 .5a ,0 .5b) )  is 
absent at this filling. With decreasing U the two side peaks sharpen and move inwards, 
while the central one gradually develops. When the filling factor is just below ;f all 
three peaks are within 2% of the positions expected for a hexagonal lattice. This is 
consistent with Lam and Girvin's theoretical result for the filling factor at which the 
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Wigner crystal becomes energetically favourable hut inconsistent with experimental 
observation of crystal states at fillings just greater than i .  The behaviour close to 
U = + is much more interesting and is shown in figure 4. This shows the ground 
state pair correlation functions at exactly U = f and one flux quantum away from 
this filling, i.e. at U = 5 and U = 2. While the ground states on either side of 
U = + are clearly hexagonal the hexagonal features at exactly v = f are washed out 
although there are excited states which do  have hexagonal symmetry. (The loss of 
hexagonal symmetry is most clearly evident aEong the line y = 0.56.) This suggests 
a tendency for the liquid state to reform at U = $ and is possibly consistent with the 
re-entrant behaviour reported by Buhmann et a1 [SI. However this conclusion must 
remain tentative as it is impossible to rule out other explanations such as finite-size 
effects. 

Figure 4. Ground stale pair correlation functions for U = f and one flu quantum to 

each side of v = 7, shaving disappearance of hexagonal symmetry at exactly U = f.  1 

In summary, finite-size calculations have been used to study Wigner crystallization 
of ZD electrons. A state of hexagonal symmetry evolves from the liquid state when 
the filling factor is in the range between $ and 4 and its energy is close to variational 
estimates of the Wigner crystal energy. Around h filling the crystal appears to be 
near-classical. There are indications of interesting behaviour when the filling factor 
passes through exactly 3. 
This work was supported by the Computational Science Initiative of the UK Science 
and Engineering Research Council. 
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